NUMBERS HAVING m SMALL rath ROOTS mod p
نویسندگان
چکیده
Here are two typical results about the numbers mentioned in the title: If p is a prime such that p = 1 (mod 6) and p > 67, then there are exactly six numbers mod p , each of which has six sixth roots less than 2yf}p in absolute value. If p is a prime such that p = 1 (mod 8), then there is at least one number mod p which has eight eighth roots less than p3/4 in absolute value.
منابع مشابه
Bounds for multiplicative cosets over fields of prime order
Let m be a positive integer and suppose that p is an odd prime with p ≡ 1 mod m. Suppose that a ∈ (Z/pZ)∗ and consider the polynomial xm − a. If this polynomial has any roots in (Z/pZ)∗, where the coset representatives for Z/pZ are taken to be all integers u with |u| < p/2, then these roots will form a coset of the multiplicative subgroup μm of (Z/pZ)∗ consisting of the mth roots of unity mod p...
متن کاملDistribution of Residues Modulo p
The distribution of quadratic residues and non-residues modulo p has been of intrigue to the number theorists of the last several decades. Although Gauss’ celebrated Quadratic Reciprocity Law gives a beautiful criterion to decide whether a given number is a quadratic residue modulo p or not, it is still an open problem to find a small upper bound on the least quadratic non-residue mod p as a fu...
متن کاملFibonacci Primitive Roots and the Period of the Fibonacci Numbers Modulop
One says g is a Fibonacci primitive root modulo /?, wherep is a prime, iff g is a primitive root modulo/7 and g = g + 1 (mod p). In [1 ] , [2 ] , and [3] some interesting properties of Fibonacci primitive roots were developed. In this paper, we shall show that a necessary and sufficient condition for a prime/? ^ 5 to have a Fibonacci primitive root is p = 1 or 9 (mod 10) and Alp) = p 1, where/I...
متن کاملCongruences involving product of intervals and sets with small multiplicative doubling modulo a prime and applications
In the present paper we obtain new upper bound estimates for the number of solutions of the congruence x ≡ yr (mod p); x, y ∈ N, x, y ≤ H, r ∈ U , for certain ranges of H and |U|, where U is a subset of the field of residue classes modulo p having small multiplicative doubling. We then use this estimate to show that the number of solutions of the congruence x ≡ λ (mod p); x ∈ N, L < x < L+ p/n,...
متن کاملElementary Number Theory
Forward We start with the set of natural numbers, N = {1, 2, 3, . . .} equipped with the familiar addition and multiplication and assume that it satisfies the induction axiom. It allows us to establish division with a residue and the Euclid’s algorithm that computes the greatest commond divisor of two natural numbers. It also leads to a proof of the fundamental theorem of arithmetic: Every natu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010